Nature’s great Ice Temple

“…the limits of the unknown had to recede step by step before the ever-increasing yearning after light and knowledge of the human mind, till they made a stand in the north at the threshold of Nature’s great Ice Temple…”

–Dr. Fridjof Nansen, Farthest North


This morning we awoke to the news that we had spent much of the night being chased off station by floating icebergs. As the sun rose, it glinted off of more than a dozen icebergs within easy reach and later, as we scanned the seafloor for good sites to take sediment cores, we had to stray from our search lines to avoid colliding with the floating giants.


Despite the fact that they are literally putting kinks in our plans, I have to admit to being thrilled by the sight of these gleaming sculptures of ice. Not only do they make for spectacular photographs, they’re also the modern analogue of the phenomenon I’m studying aboard the Royal Research Ship Discovery.


My name is Allison Jacobel and I’m a postdoctoral research scientist from Columbia University’s Lamont-Doherty Earth Observatory. Together with Grace Cushman, an undergraduate at Barnard College, I am studying the record of Earth’s past climate preserved in marine sediments. They may not look like much, but these layers of sediment, from deep below the waves, tell us about the ocean’s past temperature, salinity, productivity and how it moved heat around the planet.


Grace and I are particularly interested in the record of rocks and other terrestrial debris deposited by icebergs. These pieces of ice rafted debris were picked up by glaciers on land and as the icebergs melted at sea they deposited their load of pebbles (and sometimes even boulders) in the sediments below. Just as the icebergs floating outside our portholes are a consequence of ice melt from Greenland, the record of icebergs in the marine sediments indicates past melt.


Twenty thousand years ago, Long Island sat at the foot of an enormous glacier fed by an ice sheet that covered the greater part of North America. This was the Last Glacial Maximum, the most recent ice age. Our transition from the LGM, when Boston was covered by almost a mile of ice, to the warm climate of the present was not a smooth one. Research has shown that the transition was punctuated by catastrophic floods of icebergs that disrupted ocean circulation. Studying the history of iceberg melt is thus a valuable way to help us understand abrupt changes in climate and to shed light on the sensitivity of the climate system to additions of freshwater.


Today the Arctic is experiencing a rate of warming faster than any other place on Earth. Dramatic ice loss is occurring from the Greenland Ice Sheet and from the mountain glaciers that surround the Arctic. Although our work on the RRS Discovery is focused on past changes, our results are also important for modern climate prediction efforts. Models are currently equivocal about the future of the ocean’s overturning circulation and understanding how past inputs of meltwater affected circulation is critical to improving these models and climate forecasts.


The early 20th century polar expeditions of Nansen and other famous explorers were dedicated to expanding our geographic knowledge of the poles. Today, we know the shape of the coastlines and the safest routes for travel, but we are still working to push back the limits of the unknown. Not only are we learning the details of modern productivity regimes and deep-sea habitats, we are also using Earth’s own records to uncover its history, in the hope that we might help protect what remains of Nature’s great Ice Temple.


Allison Jacobel

Iceberg field-Marcus

A handful of the icebergs we have observed off of coastal southwest Greenland. (Photo credit: Marcus Badger)


Dirty Iceberg-Allison (ANTARCTICA)

An iceberg transferring debris to the ocean. (Photo credit: Allison Jacobel)


Mega Core-Allison

A Mega Corer, housing 8 sediment cores collected from the seafloor. (Photo credit: Allison Jacobel)


Version 2

A sediment core in the process of being sliced for geochemical analyses. (Photo credit: Grace Cushman)


Coprolite and HSB

Two gliders; Coprolite and HSB, have joined us back onboard the Discovery, having been successfully recovered today. These are Slocum Gliders, which are bright yellow, 5 feet long, 50-something kilos with a trim waist. They manipulate Archimedes’ law to steer to different depths in the water and are remotely directed by pilots operating from Southampton.

During their week-long mission, Coprolite and HSB accumulated observations of the water column, ranging from temperature and saltiness to dissolved oxygen and chlorophyll concentration. They were released in the north-eastern Labrador Sea, where they weaved in and out of a strong boundary current not far from the Greenland capital; Nuuk.

This boundary current, known as the West Greenland Current, exchanges water between both Greenland’s large continental shelf and the central Labrador Sea. This includes large-scale eddies, created by the instability of the current structure, that export water westward to the Labrador Sea’s interior. These eddies influence the formation region of a globally important deep water mass in the Labrador Sea. Recently, observations have pointed to an increased Artic freshwater presence from elevated ice melt. This trend, carried by the West Greenland Current, may restrict the extent of deep water formation.

Moreover, biologically essential nutrients, like silica, are associated with meltwater delivered from Greenland’s glacial network. Their pathways into ecosystems are controlled by circulation features dependent on the West Greenland Current, but these important circulation features often happen on small scales in space and time. It is the sampling agility of the gliders that may provide a new perspective on the circulation features initiated by this immense current.

On recovery, a hushed atmosphere swept the ship’s bridge as we squinted through a band of fog and idle seabirds for the yellow fins of the gliders. The sea surface was calm and glossy. It had the texture of jelly, with corduroy-like ripples and the gliders seemed to gloop out of it as they were whisked up into the air.

Still wet from their journey, Coprolite and HSB rest with tired batteries back on the Discovery. The mountains around Nuuk fade away into mist as the ship steams south, and it scores the surface of the Atlantic waters as it does so. We are heading towards the Southern tip of Greenland where the orange sunrise and marmalade seas will shine the toes of different mountains and, our science investigation will continue.

Jake Opher (PhD student based at the British Antarctic Survey)

ICY LAB blog 4 gliders 1

The glider, Coprolite, being lowered over the side of the Discovery for its week-long survey. Photo credit: Marcus Badger


ICY LAB blog 4 gliders 2

A pair of Pilot Whales basking in the early morning sun off the coast of Nuuk. Photo credit: Marcus Badger

Shannon a’Hoy!

Today I managed to catch our resident seafloor mapper aboard the ship, Shannon Hoy, coding extraordinaire and all-round lovely person for a quick-fire Q&A. Here she put up with my inane questions and shed some light on what she’s learning from generating maps of the ocean, from reef environments to the wider-scale abyssal geology under the waves of the Labrador Sea. Initially reading for a degree in Marine Biology, Shannon has been lucky enough to have worked on 10 expeditions at sea- spanning both Poles, as well as the international date line. She is currently working towards a Master’s degree in Ocean Mapping at the University of New Hampshire- Centre for Coastal and Ocean Mapping.

How did you get involved in cruise ICY-LAB?

I first met Laura Robinson and Kate Hendry (Chief Scientist) in 2011 during a research cruise to the Drake Passage in the Southern Ocean, and since then have taken up any opportunity to go to sea with them again!

What’s your role on the ship, and what motivates you to work in this field?

I run acoustic sonar systems to find out the bathymetry and geological features of the seafloor, as well as to find out locations of open-ocean populations and to look at physical parameters of the water column. Currently we are trying to map the boundaries between water masses based on their physical characteristics, which is really exciting! The physical oceanographers on the Discovery find this sort of information useful, as it ties in with how water masses mix and flow in the sea. A large aspect of my job is to add a spatial context to data that other scientists are collecting- this is important to support accurate interpretations of oceanic processes, by the addition of visual elements.

How does it work?

Transducers that are dotted along the outside of the ship send pulses of sound down to the seafloor. These bursts of sound get reflected back, and are heard by hydrophones also located along the ship. By calculating how fast these sound pulses travel through water, we can see how long it takes them to reach the seafloor. By repeatedly firing down pulses of sound we can work out the depth of the seafloor changes along a given trail, and therefore build a picture of what the seafloor topography looks like. For this cruise, we’ve been using this technology to locate seamounts and other places where we might be able to find seafloor communities for sampling!

What does your typical day at sea look like?

After getting up, I correspond with the previous watch about what happened over the last 12 hours. Then I make sure the multitude of screens are ticking over nicely and aren’t throwing up warning messages, and generally make sure things run smoothly. When they don’t, like when the sonars cut out, it’s a case of quick thinking and troubleshooting for my part! Taking data and presenting it in a visually stimulating way takes up a large portion of my time, and this is all fuelled by copious amounts of coffee and biscuits.

What’s been the biggest learning curve of this experience?

Typically, I’m the only one making decisions about how to properly set up this equipment and where to sample, so learning the systems to a sufficient level and relying on my own expertise to keep everything going has been the most frightening and beneficial aspect.

What’s your favourite bit of the job?

There’s nothing quite like uncovering and exploring swaths of the seafloor that no one’s seen before, as well as everything that comes with being at sea! I’ve done 3 cruises with the Bristol team, so learning about fossil corals as windows into past oceanic conditions has been really cool. As my undergraduate degree was in marine biology, having the opportunity to play with squishy things again has been great.

What’s your favourite part of living on the Disco?

The views, the food and the people. And that it’s so loud that no-one can hear me snore!

 What are you most glad you brought, and anything you wish you had?

I’m glad I brought my iPad and headphones to sate my desire for constant One Direction hits. I wish I brought slippers and a warm jacket!

Any advice for people who want to go down a similar route?

I think many people find ocean mapping via other avenues, so there’s no direct route to take. The ocean sciences incorporate a lot of disciplines, so for me dabbling in many fields has lead me to what I do today! Being at sea has been great for getting exposure to many aspects of scientific research and computer technology, so there’s a lot to learn and be enthused by.

Adam Cooper

ICY lab image 7

Shannon trying to salvage multibeam data in 50 knot winds! Photo credit: Laura Robinson

Musings from the Graveyard Shift

What’s it like to be on the night shift of ICY-LAB when the weather’s bad? Here we ask the night-shifters for their impressions of the cruise so far, and what have they learnt?

Michelle says she has learnt that you just can’t hold a sea pig in one hand – it’s true!

Shannon has learnt Casing Software. She says it may seem boring, but it lets you see how all the ship’s acoustics systems are running.

Hong Chin is convinced that you just can’t get enough seawater for sampling – FACT.

Everyone agrees that cheese can be a component of every meal – and that you can eat too much cake.

Laura has learnt that the smell of cheese and onion crisps is not helpful when you’re feeling seasick.

Adam’s favourite activities are recording ROV data on cassettes and pickling biological samples for genetic analyses in ethanol – and he learnt how to appropriately stuff a Euplectella (the ‘marriage sponge’ that two shrimps are locked within for life) to retain its delicate shape.

We all appreciate Hong Chin’s thank-you bow; it’s respectful and delightful.

Steph has learnt that up to a certain point the rolling of the ship is soporific – but too much is too much.

We all learnt that the ‘happy baby’ yoga position cannot be held with a straight face on a rolling ship.

Shannon is aware that she creates science hazards by doing multibeam surveys – George succumbed to the only real bout of seasickness.

Weirdly we have been learning Southern manners, courtesy of Shannon.

James only brought one pair of shoes, so he wears overshoes most of the time – we like that.

We have learnt the direct tea and biscuit ratio to encourage important ROV collections from the engineers.

Adam has learnt the correct pronunciation of Desmophyllum.

We learnt how many kilograms of samples we can collect before the ROV can’t leave the seafloor.

Laura learnt that James is hilarious.

George has learnt to think on his feet – you can’t always stick to the protocol when the conditions aren’t right.

Michelle has learnt that you have to be very clear when explaining genetics to geologists.

You can’t pack too many bungees.



The (tired, but cheerful!) Night Shift


ICY LAB blog 4 pic 1

The Night Shift Team! Photo credit: Shannon Hoy

ICY LAB blog 4 pic 2

Night Shift Team Leader, Laura Robinson. Photo credit: Shannon Hoy

ICY LAB blog 4 pic 3

An atmospheric sunrise over Western Greenland, while CTD surveys were underway. Photo credit: Shannon Hoy

Transit to Greenland!

My name is Kate, and I’m the chief scientist on board DY081. As chief scientist, I have to make decisions about where we go and what we do, so it’s a pretty full time job! This is the first time that I’ve been in this role. I’ve learned a lot so far – and I’m sure the learning curve will continue to rise steeply – so I’m enjoying the challenge. It helps immensely that I have such a fantastic team with me.

A beautiful sunset during ROV deployment the other day (photo credit: Shannon Hoy)

We’re now in transit from our first site at Orphan Knoll to our next target: Greenland.  This means that there’s a little bit more time for everyone (including me!) to catch up on things after working so hard, such as laundry, calling home, and blog writing! The weather so far has been kind to us, but we’re following in the wake of a storm so the waves are a little bigger than they have been – just as a little reminder that we’re still at sea!



Our first site was a great success.  We collected water samples, particles from the seawater, sediment cores, and biology – and everyone on board is pleased to get their samples. I’m delighted too that things have gone so well – but I’m also itching to get to Greenland!  The main aim of ICY-LAB is to study how the melting of ice on land impacts ocean nutrients… so, for that, we need to get closer to the ice itself. All being well, we will be there in a couple of days and will be able to report back more!

Some of the ICY-LAB team enjoying a bit of sunbathing during the transit to Greenland, taking a break from the hard work at Orphan Knoll (photo credit Marcus Badger)


ROV-ing through Orphan Knoll

Though the Remotely Operated Vehicle (ROV) that sits on the deck of the Discovery weighs in at four tonnes, when ambling along the sea floor its neutral buoyancy means it’s as light as a feather. This is necessary given the stealth and precision that the ROV requires to sample the bizarre lifeforms that inhabit Orphan Knoll- a bathymetric high within the Labrador Sea, and a suspected area of high biological variability. Equipped with mechanical claws, slurp-tubes, buckets, bottles and corers to harvest specimens from depths of 3,500 metres in these parts, the ROV was sent on its maiden voyage of ICY-LAB on Saturday.

When you’re in midst of a vast ocean, the unbreakable continuity of the undulating steely-blue waters at the surface can trick you into thinking it’s a barren abyss that’s void of life. However, within the first 200 metres of the descent, while the ROV was still warming up its ‘arms’, the computer monitors back onboard lit up with chaotic clouds of phytoplankton darting in all directions. Dazed fish and rays meandered before the robot’s cameras, and the sky-blue colour of the water developed into a rich, full indigo as the kit sank lower and lower. The main laboratory was rapidly converted to a makeshift cinema as onlookers gathered to take in the spectacle.

While it has the capability to roam up to 6 kilometres, the ROV is tethered to the ship as a means of operating the copious gadgets loaded onto its frame. Such operations occur in a darkened room teeming with engineers to adjust the cameras, maintain the course and speed, and control the arms of the submersible. Though the atmosphere was tense during the seafloor landing several hours after deployment, relentless noughties pop hits that were blasted through the ‘ROV hut’ seemed to relax the navigators (and deter several scientists). In no time at all, we were bobbing along coral gardens, slurping up sponges, and scaling the steep inclines of Orphan Knoll on the lookout for as many diverse species as could be crammed into the ROV’s containers.

It was difficult to bid farewell to the seafloor, even after our successful 24-hour voyage. After the ROV surfaced, it was a scramble to collect and preserve the biological samples as soon as possible for an assortment of experiments, with buckets of seawater primed for the ferrying of samples to and from the lab.

‘By collecting and analysing sponges and corals at a range of depths as we move up this bathymetric high, we can glean how important seafloor communities process nutrients from the waters they bathe in. The ROV offers a unique window into these environments, as most of these features have never been physically seen before’ says Kate Hendry, Chief Scientist. ‘By understanding the conditions that these creatures thrive in, we may have a better understanding of how they may react to climatic forcing in the future’.

Genetic biologist Michelle Taylor, Oxford University, is enthusiastic about collecting species to improve our understanding of habitat diversity. ‘We can identify how closely-related benthic species are by looking at their genetic code, and therefore understand how specific populations are connected across the region’, Michelle says. ‘This will ultimately facilitate governmental decisions regarding how regions of the ocean floor should be protected and managed’.

ICY lab image 3

Final checks being carried out on the ROV before deployment. Photo credit: Shannon Hoy

ICY lab image 4

The ICY-LAB team taking in their first view of the seafloor around Orphan Knoll in the ROV hut. Photo credit: Shannon Hoy

Written by Adam Cooper


All hands on deck!


After convening in Gatwick Airport early on Sunday morning, our enthusiastic team of scientists finally made the flight over the Atlantic, and landed in St John’s, Canada; the starting point of research cruise ‘ICY-LAB’ (Isotope CYcling in the LABrador Sea). Spirits were high as we were greeted by a chilly 7 °C breeze, but a much warmer welcome from passport control. Located on the easternmost point of Canada and the fringes of the western Atlantic, St John’s in Newfoundland will be the starting point of our expedition that has been in the works for over a year. Shortly after arriving, we made little work of scouting out the RRS Discovery, huddled amongst fishing vessels and cargo ships along the dockside. Since then, our time has been spent stocking the labs with fresh bottles and tubing, tying down hulking pieces of equipment in defiance of the raging waves, tinkering with remotely-operated submersibles and stocking up on copious amounts of sea-sickness medication. Wifi has even been secured, despite an originally unyielding server onboard, so count it as a major success that you’re able to read this blog!

We’ll be setting off tomorrow for our first pit stop- a seamount off of the Canadian coast called Orphan Knoll- to explore seafloor ecosystems of the area whilst taking water samples and measuring the behaviour of the water masses across the Labrador Sea. While measuring profiles of the water column over its entire depth is a primary task in most oceanographic expeditions of this sort, knowledge of the creatures that crawl along the deep remain a big mystery. By collecting an assortment of corals, sponges and invertebrates, we hope to gain information on the sorts of environments some of these poorly-known species thrive in, how they interact both with each other, and how they might be affected in a warming world. Understanding how vast swathes of glaciers crumble into the icy waters between Canada and Greenland from high latitudes, altering global-scale circulation trends and transferring nutrients to the ocean represents the overarching aim of ICY-LAB. Few seafloor sampling efforts in this dynamic region mean that uncovering the bustling biota represents a gold mine for new discoveries, and we believe the Discovery is more than capable in accommodating our efforts.

For such a wide-ranging mission, a mix of scientists with varied backgrounds are eager to learn about many aspects of the marine environment. While researchers from US, Canadian and UK universities will be working round the clock, there are many things to gain from the privilege of spending time on a world-class research vessel.

“Seeing the Greenlandic scenery once we reach the coast will be really exciting. Hopefully we won’t be hit by too many storms beforehand!”- Dr Stephanie Bates from the University of Bristol, equipment and data manager.

“The amazing food onboard is definitely great motivation to keep working! This cruise will be a great chance to learn about different aspects of the marine sciences I haven’t had much exposure to- particularly using the geophysical equipment we’ll be deploying to map the seafloor. It’s definitely an awesome opportunity to develop skills fast, as the five weeks will fly by!”- Dr Hong Chin Ng from Bristol, member of the chemical oceanography team.

And so, as the minutes tick down, the atmosphere on the boat is one of excitement as we’re all raring for to get going. Come along for the (hopefully not too bumpy) ride, as we’ll keep you updated with our findings!

ICY-lab image 1

L-R: George Rowland (University of Bristol), Kate Hendry (Chief Scientist, UoB), Hong Chin Ng (UoB), Allison Jacobel (Columbia University) by the dockside in St John’s, Newfoundland and Labrador.

ICY-lab image 2

Hong Chin (UoB) and James Williams (Cardiff University) organising equipment in the chemistry lab.

Written by Adam Cooper, MSc student at the University of Southampton


29th May 2017

We’re getting closer to our scientific cruise! We’ll be flying out of the UK (and other countries!) in just over a month’s time, to St Johns in Canada, where we will meet the RRS Discovery and head off on cruise number DY081.

The Discovery, however, is about to start its own journey in just a few days, heading off from Southampton on another scientific project, before our rendez-vous in Canada. This means that we have to get as much packed and on to the ship as we possibly can!

We have been busy buying all the bits and pieces that you need at sea, from sample bottles and spectrophotometers, all the way through to mops and buckets.

Kate and Hong Chin buying a mop and a bucket for DY081!

Then it’s a matter of getting everything in boxes. How much stuff do we really need to take?!

Steph, and all the boxes!

Welcome to ICY-LAB!

Isotope CYcling in the LABrador Sea!

This page is under construction, but will be all about Project ICY-LAB!

The high-latitude regions are experiencing some of the most rapid changes observed in recent decades: polar temperatures are rising twice as fast as the global mean and there are concerns about the impact of sea-ice and glacier retreat on global oceans and climate. The high-latitude North Atlantic is also a key region for ecologically and economically important natural resources such as fisheries. How these resources will change in the future depends strongly on the response of marine biogeochemical cycling of essential nutrients to increasing anthropogenic stress.


Diatoms are photosynthetic algae that are responsible for nearly half of the export of carbon from the sea surface to the seafloor, and they are a sensitive indication of the state of nutrient cycling. Diatoms are one of many organisms that precipitate biogenic opal, an amorphous glass made of silica (hydrated SiO2), to form protective skeletons, and one of the essential nutrients is therefore dissolved silicon (Si) in the form of silicic acid. The response of the silicon cycle to changing environmental conditions is critical for both carbon and nutrient cycling and it can now be addressed through high precision silicon isotopes, which is the focus of ICY-LAB.


The approach will be to capture the whole silicon cycle system in areas of marked environmental change using careful field sampling strategies – with research expeditions to coastal Greenland and the open ocean Labrador Sea – coupled with cutting-edge analytical methods. The results will lead to an unprecedented and cross-disciplinary view of nutrient cycling, biomineralisation, and the taxonomy and biogeography of siliceous organisms in an ecologically important region of the North Atlantic.